Copied to
clipboard

G = C22.D52order 416 = 25·13

3rd non-split extension by C22 of D52 acting via D52/D26=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22.4D52, C23.16D26, C523C45C2, C2.8(C2×D52), (C2×C26).4D4, C26.6(C2×D4), (C2×C4).9D26, C22⋊C46D13, D26⋊C47C2, (C2×C52).3C22, C26.23(C4○D4), (C2×C26).27C23, (C22×Dic13)⋊2C2, C132(C22.D4), C2.10(D42D13), (C22×C26).16C22, (C22×D13).5C22, C22.45(C22×D13), (C2×Dic13).31C22, (C13×C22⋊C4)⋊4C2, (C2×C13⋊D4).5C2, SmallGroup(416,107)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C22.D52
C1C13C26C2×C26C22×D13C2×C13⋊D4 — C22.D52
C13C2×C26 — C22.D52
C1C22C22⋊C4

Generators and relations for C22.D52
 G = < a,b,c,d | a2=b2=c52=1, d2=b, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=bc-1 >

Subgroups: 536 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C13, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D13, C26, C26, C26, C22.D4, Dic13, C52, D26, C2×C26, C2×C26, C2×C26, C2×Dic13, C2×Dic13, C2×Dic13, C13⋊D4, C2×C52, C22×D13, C22×C26, C523C4, D26⋊C4, C13×C22⋊C4, C22×Dic13, C2×C13⋊D4, C22.D52
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, D13, C22.D4, D26, D52, C22×D13, C2×D52, D42D13, C22.D52

Smallest permutation representation of C22.D52
On 208 points
Generators in S208
(2 152)(4 154)(6 156)(8 106)(10 108)(12 110)(14 112)(16 114)(18 116)(20 118)(22 120)(24 122)(26 124)(28 126)(30 128)(32 130)(34 132)(36 134)(38 136)(40 138)(42 140)(44 142)(46 144)(48 146)(50 148)(52 150)(53 175)(55 177)(57 179)(59 181)(61 183)(63 185)(65 187)(67 189)(69 191)(71 193)(73 195)(75 197)(77 199)(79 201)(81 203)(83 205)(85 207)(87 157)(89 159)(91 161)(93 163)(95 165)(97 167)(99 169)(101 171)(103 173)
(1 151)(2 152)(3 153)(4 154)(5 155)(6 156)(7 105)(8 106)(9 107)(10 108)(11 109)(12 110)(13 111)(14 112)(15 113)(16 114)(17 115)(18 116)(19 117)(20 118)(21 119)(22 120)(23 121)(24 122)(25 123)(26 124)(27 125)(28 126)(29 127)(30 128)(31 129)(32 130)(33 131)(34 132)(35 133)(36 134)(37 135)(38 136)(39 137)(40 138)(41 139)(42 140)(43 141)(44 142)(45 143)(46 144)(47 145)(48 146)(49 147)(50 148)(51 149)(52 150)(53 175)(54 176)(55 177)(56 178)(57 179)(58 180)(59 181)(60 182)(61 183)(62 184)(63 185)(64 186)(65 187)(66 188)(67 189)(68 190)(69 191)(70 192)(71 193)(72 194)(73 195)(74 196)(75 197)(76 198)(77 199)(78 200)(79 201)(80 202)(81 203)(82 204)(83 205)(84 206)(85 207)(86 208)(87 157)(88 158)(89 159)(90 160)(91 161)(92 162)(93 163)(94 164)(95 165)(96 166)(97 167)(98 168)(99 169)(100 170)(101 171)(102 172)(103 173)(104 174)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 180 151 58)(2 57 152 179)(3 178 153 56)(4 55 154 177)(5 176 155 54)(6 53 156 175)(7 174 105 104)(8 103 106 173)(9 172 107 102)(10 101 108 171)(11 170 109 100)(12 99 110 169)(13 168 111 98)(14 97 112 167)(15 166 113 96)(16 95 114 165)(17 164 115 94)(18 93 116 163)(19 162 117 92)(20 91 118 161)(21 160 119 90)(22 89 120 159)(23 158 121 88)(24 87 122 157)(25 208 123 86)(26 85 124 207)(27 206 125 84)(28 83 126 205)(29 204 127 82)(30 81 128 203)(31 202 129 80)(32 79 130 201)(33 200 131 78)(34 77 132 199)(35 198 133 76)(36 75 134 197)(37 196 135 74)(38 73 136 195)(39 194 137 72)(40 71 138 193)(41 192 139 70)(42 69 140 191)(43 190 141 68)(44 67 142 189)(45 188 143 66)(46 65 144 187)(47 186 145 64)(48 63 146 185)(49 184 147 62)(50 61 148 183)(51 182 149 60)(52 59 150 181)

G:=sub<Sym(208)| (2,152)(4,154)(6,156)(8,106)(10,108)(12,110)(14,112)(16,114)(18,116)(20,118)(22,120)(24,122)(26,124)(28,126)(30,128)(32,130)(34,132)(36,134)(38,136)(40,138)(42,140)(44,142)(46,144)(48,146)(50,148)(52,150)(53,175)(55,177)(57,179)(59,181)(61,183)(63,185)(65,187)(67,189)(69,191)(71,193)(73,195)(75,197)(77,199)(79,201)(81,203)(83,205)(85,207)(87,157)(89,159)(91,161)(93,163)(95,165)(97,167)(99,169)(101,171)(103,173), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,175)(54,176)(55,177)(56,178)(57,179)(58,180)(59,181)(60,182)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,201)(80,202)(81,203)(82,204)(83,205)(84,206)(85,207)(86,208)(87,157)(88,158)(89,159)(90,160)(91,161)(92,162)(93,163)(94,164)(95,165)(96,166)(97,167)(98,168)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,180,151,58)(2,57,152,179)(3,178,153,56)(4,55,154,177)(5,176,155,54)(6,53,156,175)(7,174,105,104)(8,103,106,173)(9,172,107,102)(10,101,108,171)(11,170,109,100)(12,99,110,169)(13,168,111,98)(14,97,112,167)(15,166,113,96)(16,95,114,165)(17,164,115,94)(18,93,116,163)(19,162,117,92)(20,91,118,161)(21,160,119,90)(22,89,120,159)(23,158,121,88)(24,87,122,157)(25,208,123,86)(26,85,124,207)(27,206,125,84)(28,83,126,205)(29,204,127,82)(30,81,128,203)(31,202,129,80)(32,79,130,201)(33,200,131,78)(34,77,132,199)(35,198,133,76)(36,75,134,197)(37,196,135,74)(38,73,136,195)(39,194,137,72)(40,71,138,193)(41,192,139,70)(42,69,140,191)(43,190,141,68)(44,67,142,189)(45,188,143,66)(46,65,144,187)(47,186,145,64)(48,63,146,185)(49,184,147,62)(50,61,148,183)(51,182,149,60)(52,59,150,181)>;

G:=Group( (2,152)(4,154)(6,156)(8,106)(10,108)(12,110)(14,112)(16,114)(18,116)(20,118)(22,120)(24,122)(26,124)(28,126)(30,128)(32,130)(34,132)(36,134)(38,136)(40,138)(42,140)(44,142)(46,144)(48,146)(50,148)(52,150)(53,175)(55,177)(57,179)(59,181)(61,183)(63,185)(65,187)(67,189)(69,191)(71,193)(73,195)(75,197)(77,199)(79,201)(81,203)(83,205)(85,207)(87,157)(89,159)(91,161)(93,163)(95,165)(97,167)(99,169)(101,171)(103,173), (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,105)(8,106)(9,107)(10,108)(11,109)(12,110)(13,111)(14,112)(15,113)(16,114)(17,115)(18,116)(19,117)(20,118)(21,119)(22,120)(23,121)(24,122)(25,123)(26,124)(27,125)(28,126)(29,127)(30,128)(31,129)(32,130)(33,131)(34,132)(35,133)(36,134)(37,135)(38,136)(39,137)(40,138)(41,139)(42,140)(43,141)(44,142)(45,143)(46,144)(47,145)(48,146)(49,147)(50,148)(51,149)(52,150)(53,175)(54,176)(55,177)(56,178)(57,179)(58,180)(59,181)(60,182)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,201)(80,202)(81,203)(82,204)(83,205)(84,206)(85,207)(86,208)(87,157)(88,158)(89,159)(90,160)(91,161)(92,162)(93,163)(94,164)(95,165)(96,166)(97,167)(98,168)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,180,151,58)(2,57,152,179)(3,178,153,56)(4,55,154,177)(5,176,155,54)(6,53,156,175)(7,174,105,104)(8,103,106,173)(9,172,107,102)(10,101,108,171)(11,170,109,100)(12,99,110,169)(13,168,111,98)(14,97,112,167)(15,166,113,96)(16,95,114,165)(17,164,115,94)(18,93,116,163)(19,162,117,92)(20,91,118,161)(21,160,119,90)(22,89,120,159)(23,158,121,88)(24,87,122,157)(25,208,123,86)(26,85,124,207)(27,206,125,84)(28,83,126,205)(29,204,127,82)(30,81,128,203)(31,202,129,80)(32,79,130,201)(33,200,131,78)(34,77,132,199)(35,198,133,76)(36,75,134,197)(37,196,135,74)(38,73,136,195)(39,194,137,72)(40,71,138,193)(41,192,139,70)(42,69,140,191)(43,190,141,68)(44,67,142,189)(45,188,143,66)(46,65,144,187)(47,186,145,64)(48,63,146,185)(49,184,147,62)(50,61,148,183)(51,182,149,60)(52,59,150,181) );

G=PermutationGroup([[(2,152),(4,154),(6,156),(8,106),(10,108),(12,110),(14,112),(16,114),(18,116),(20,118),(22,120),(24,122),(26,124),(28,126),(30,128),(32,130),(34,132),(36,134),(38,136),(40,138),(42,140),(44,142),(46,144),(48,146),(50,148),(52,150),(53,175),(55,177),(57,179),(59,181),(61,183),(63,185),(65,187),(67,189),(69,191),(71,193),(73,195),(75,197),(77,199),(79,201),(81,203),(83,205),(85,207),(87,157),(89,159),(91,161),(93,163),(95,165),(97,167),(99,169),(101,171),(103,173)], [(1,151),(2,152),(3,153),(4,154),(5,155),(6,156),(7,105),(8,106),(9,107),(10,108),(11,109),(12,110),(13,111),(14,112),(15,113),(16,114),(17,115),(18,116),(19,117),(20,118),(21,119),(22,120),(23,121),(24,122),(25,123),(26,124),(27,125),(28,126),(29,127),(30,128),(31,129),(32,130),(33,131),(34,132),(35,133),(36,134),(37,135),(38,136),(39,137),(40,138),(41,139),(42,140),(43,141),(44,142),(45,143),(46,144),(47,145),(48,146),(49,147),(50,148),(51,149),(52,150),(53,175),(54,176),(55,177),(56,178),(57,179),(58,180),(59,181),(60,182),(61,183),(62,184),(63,185),(64,186),(65,187),(66,188),(67,189),(68,190),(69,191),(70,192),(71,193),(72,194),(73,195),(74,196),(75,197),(76,198),(77,199),(78,200),(79,201),(80,202),(81,203),(82,204),(83,205),(84,206),(85,207),(86,208),(87,157),(88,158),(89,159),(90,160),(91,161),(92,162),(93,163),(94,164),(95,165),(96,166),(97,167),(98,168),(99,169),(100,170),(101,171),(102,172),(103,173),(104,174)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,180,151,58),(2,57,152,179),(3,178,153,56),(4,55,154,177),(5,176,155,54),(6,53,156,175),(7,174,105,104),(8,103,106,173),(9,172,107,102),(10,101,108,171),(11,170,109,100),(12,99,110,169),(13,168,111,98),(14,97,112,167),(15,166,113,96),(16,95,114,165),(17,164,115,94),(18,93,116,163),(19,162,117,92),(20,91,118,161),(21,160,119,90),(22,89,120,159),(23,158,121,88),(24,87,122,157),(25,208,123,86),(26,85,124,207),(27,206,125,84),(28,83,126,205),(29,204,127,82),(30,81,128,203),(31,202,129,80),(32,79,130,201),(33,200,131,78),(34,77,132,199),(35,198,133,76),(36,75,134,197),(37,196,135,74),(38,73,136,195),(39,194,137,72),(40,71,138,193),(41,192,139,70),(42,69,140,191),(43,190,141,68),(44,67,142,189),(45,188,143,66),(46,65,144,187),(47,186,145,64),(48,63,146,185),(49,184,147,62),(50,61,148,183),(51,182,149,60),(52,59,150,181)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G13A···13F26A···26R26S···26AD52A···52X
order1222222444444413···1326···2626···2652···52
size111122524426262626522···22···24···44···4

74 irreducible representations

dim1111112222224
type+++++++++++-
imageC1C2C2C2C2C2D4C4○D4D13D26D26D52D42D13
kernelC22.D52C523C4D26⋊C4C13×C22⋊C4C22×Dic13C2×C13⋊D4C2×C26C26C22⋊C4C2×C4C23C22C2
# reps1221112461262412

Matrix representation of C22.D52 in GL4(𝔽53) generated by

1000
0100
0010
00052
,
1000
0100
00520
00052
,
30200
443300
0001
00520
,
241400
462900
00230
00023
G:=sub<GL(4,GF(53))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,52],[1,0,0,0,0,1,0,0,0,0,52,0,0,0,0,52],[30,44,0,0,2,33,0,0,0,0,0,52,0,0,1,0],[24,46,0,0,14,29,0,0,0,0,23,0,0,0,0,23] >;

C22.D52 in GAP, Magma, Sage, TeX

C_2^2.D_{52}
% in TeX

G:=Group("C2^2.D52");
// GroupNames label

G:=SmallGroup(416,107);
// by ID

G=gap.SmallGroup(416,107);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,217,218,188,122,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^52=1,d^2=b,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=b*c^-1>;
// generators/relations

׿
×
𝔽